Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.
\star
)

LIGHT-INTENSITY CONTROLLER FOR BIOLOGICAL RESEARCH

ARS-S-77
November 1975

CONTENTS

Page
Abstract 1
Introduction 1
Circuit description and construction 1
Results and discussion 4
Illustrations
Fig.

1. Schematic of solid-state dimmer control 2
2. Average absolute alternating-current voltage applied to load during typical 1-hour ON and OFF transition periods 4

Trade names are used in this publication solely for the purpose of providing specific information. Mention of a trade name does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or an endorsement by the Department over other products not mentioned.

[^0]
SOLID-STATE LIGHT-INTENSITY CONTROLLER FOR BIOLOGICAL RESEARCH

By K. R. Beerwinkle and I. L. Berry ${ }^{1}$

ABSTRACT

A solid-state light-intensity controller for incandescent lamps was designed and constructed to simulate natural dusk and dawn in enviromental chambers for biological research. An RC timing circuit is used with negative feedback to give switch-selectable transition periods from 15 minutes to 3 hours in length. Average absolute voltage change to the lamps is linear and no expensive motors, gear drives, or autotransformers are required.

INTRODUCTION

Simulation of twilight corresponding to natural dusk and dawn is frequently necessary in environmental chambers used for entomological and other biological research. Several electromechanical systems have been developed to serve this need. Fowler et al. (2) ${ }^{2}$ used a motorized mechanical-shutter arrangement, and Daterman (1) used several banks of lights which were sequentially controlled. Levin et al. (4) and Wood (8) used reversible motors to drive autotransformers. Sparks (6), Moody et al. (5), and Tanabe (7) described systems in which small direct-current motors were programed to rotate the controls of solid-state dimmer switches. While such systems may perform satisfactorily, a totally solid-state control is more desirable because the difficulty in constructing a motor and gear-driven arrangement can be avoided, and no expensive autotransformers or motors are required.

The incandescent-lamp controller described here is totally solid-state except for one electromechanical relay. Four inexpensive, active semiconductor devices are used in a phase-control circuit to provide switch-selectable transition

[^1]periods of up to 3 hours in duration. Negative feedback is used to make the change in average absolute alternating-current voltage across the lamps linear with time.

CIRCUIT DESCRIPTION AND CONSTRUCTION

Phase control using thyristors has become one of the most common means of controlling power to electric motors, lamps, and heaters. With an alternating-current voltage applied to the circuit, a gated thyristor such as a triac remains in its off state for the first portion of each halfcycle of the powerline frequency, and no power is applied to the load. Then, at a time (phase angle) determined by the control circuit, the thyristor switches on for the remainder of the half-cycle, supplying load power. By controlling the phase angle at which the triac is switched on, the relative power in the load is controlled. Unijunction transistors are often used to provide synchronized trigger pulses to switch on thyristors at the desired phase angles. Phasecontrol theory and applications are discussed in detail by Zinder $(9,11)$ and Haver and Zinder (3).

Triac D_{1} in figure 1 controls the power to the incandescent lamps. A unijunction transistor circuit consisting of Q_{3}, T_{1}, R_{i}, and C_{3} provides a synchronized gate pulse to D_{1}. The conduction phase angle of D_{1} is dependent on the charging rate of C_{3} in the trigger circuit.

The two transistors, Q_{1} and Q_{2}, form a highin direct-current amplifer, which controls the targing rate of C_{3} and thereby the conduction hase angle of D_{1}. The diode bridge across D_{1} ovides synchronization for the unijunction ansistor trigger circuit and negative feedback rough R_{4}. The negative feedback current is Itered by C_{1}, and the voltage across the dividing sistors in S_{3} is approximately proportional to e average absolute voltage across D_{1} and insrsely proportional to the average absolute oltage across the load.
During normal operation, when the power to e load is only partly on, the operation of the rcuit is similar to that of an inverting operaonal amplifier wired in an integrating mode. he gate of Q_{1} is a summing point for negative edback current through C_{2} and the current rough R_{1}. Whenever the voltage at this suming point deviates from an equilibrium point, e error is sensed by Q_{1}, amplified, and applied , the load in the form of a change in alternat-ig-current power. The resulting change in egative feedback corrects the error and returns le gate voltage to the equilibrium point. Since le voltage on the gate of Q_{1} remains constant hile power is changing to the load, the voltage cross R_{1} is constant, and the feedback voltage cross C_{2} must vary linearly to compensate for ie constant current through R_{1}. Therefore, the verage absolute output voltage must also vary nearly to maintain the linear feedback voltage. The voltage on the gate of Q_{1} is about 10 and ; set by moving S_{4} to the balance (B) position nd adjusting R_{3} until the average absolute voltge to the load is one-half of maximum. Then, rith S_{1} in the operate (O) position, positive urrent through R_{1} when S_{2} is switched to 20 olts equals the negative current when S_{2} is witched to zero volts, and the rate of average bsolute voltage change to the load is similar, thether increasing or decreasing.
When the power to the load is either fully off r fully on, negative feedback is at a maximum r a minimum, and the constant voltage is no onger maintained on the base of Q_{1}. Therefore, t the end of each transition period, this voltage harges or discharges exponentially to the voltge determined by the state of S_{2} (0 or 20 olts) and remains there until S_{2} is changed. When S_{2} is switched, the voltage again changes xponentially until it reaches about 10 volts, at
which point feedback control is established, and the average absolute voltage to the load begins to change linearly. The delay between switching of S_{2} and beginning of power change to the load is determined by the RC time constant of R_{1} and C_{2} and the residual charge on C_{2} at the time of switching. This delay is a maximum of 46 minutes when C_{2} is fully charged or fully discharged and must be considered as lag time when setting the external time clock that controls S_{2}.

The time required for the linear transition period is given by $T=(\Delta V \times C) / I$, where $T=$ time in seconds for transition period, $\Delta V=$ total feedback voltage change during transition at selected S_{3} position, $C=$ capacitance of C_{2} in microfarads, and $I=$ current through $\mathrm{R}_{1}\left(\backsim 10^{-8}\right.$ ampere).

Transition periods from 15 minutes to 3 hours in length are selected by S_{3} to obtain the proper value of ΔV to satisfy the above equation for the desired time. The value specified for R_{4} is the theoretical value derived with the assumption that all components are perfect. To compensate for component tolerances in each individual circuit, the value of R_{4} may need to be increased or decreased slightly to give the transition periods indicated.

Setting S_{4} to the reset (R) position places R_{2} in parallel with R_{1} and reduces the transition time by a factor of approximately 50 for each set point of S_{3}. The switch is used to reduce the time required for transitions during checkout procedures and to rapidly reset the operating point of the control circuit as necessary because of power interruption or changed control schedules.

The maximum full-on voltage applied to the lamps is controlled by the maximum conduction phase angle allowed by the trigger circuit. In this design, this angle is approximately 150 degrees and is determined by R_{5} when Q_{2} is in saturation. The 150 -degree phase angle with 120 volts root mean square of input corresponds to approximately 114 volts root mean square and 100 volts average to the load.

The incandescent lamp load is limited to 800 watts by the maximum current rating of D_{1}. For loads greater than 100 watts, D_{1} should be mounted on an aluminum plate or other adequate heat sink. Fuse F_{1} protects the circuit and is sized to correspond to load current. Neon indicator I_{1} is a pilot light for main power, and
I_{2} indicates when S_{2} is in the position for increasing power to the load.

The complete control circuit was assembled using a printed circuit and was housed in a single chassis with external leads provided for 117 volts (ac) of input power, output power to the load, and connection of relay switch S_{2} to the external time clock. The chassis was grounded through the alternating-current power plug. Total component cost, excluding time clock, was about $\$ 50$.

RESULTS AND DISCUSSION

A typical recording of average absolute al-ternating-current voltage change to the load during 1-hour transition periods is shown in figure 2. For optimum transition linearity over the specfied time periods, the combined gain of Q_{1} and Q_{2} and the conversion efficiency of Q_{3} and D_{1} must be high so that a minimal change in voltage at the gate of Q_{1} will produce a large change in output power. Also, the maintenance of high input impedance at the gate of Q_{1} is imperative. Thus, Q_{1} must be an insulated-gate field-effect transistor, C_{2} must be a low-leakage capacitor, and circuit assembly techniques must be such that high impedance is preserved.

During periods of active power change to the load, the switching of the triac will generate some radio-frequency (RF) noise which may interfere with AM radio reception or with precision instrumentation and controls in the immediate area. Filter capacitors C_{4} and C_{5} suppress the RF noise slightly. Zinder (10) discusses methods for more complete suppression of RF noise in thyristor circuits.

The feedback network of this circuit detects the average absolute voltage across the triac. Hence, this parameter increases or decreases at a linear rate in time. A more elaborate circuit might be devised to detect and control the root mean square voltage. However, since neither of these parameters is linearly proportional to power nor to light output of incandescent lamps, average absolute voltage was used because it is easier to detect.

It should be noted that all parts of the control circuit are at an alternating-current potential different from chassis ground. Thus, caution is necessary to prevent electrical shock while assembling and checking out the circuit.

Three complete solid-state light-intensity conllers have been built and used successfully by ooperator in entomological research to stimua crepuscular activity of mosquitoes.

LITERATURE CITED

Daterman, G. E. 1970. An improved technique for mating European pine shoot moth, Phyaconia buoliana (Lepidoptera: Olethreutidae) in the laboratory. Can. Entomol. 102: 541.
Fowler, H. W., Jr., Murdock, W. P., Bullock, H. R., Parker, W. H., and Baumgardner, H. E. 1958. A simple insectary artificial light controller. Mosquito News 18: 234-235.
Haver, R. J., and Zinder, D. A. 1972. Conventional and soft-start dimming of incandescent lights. Motorola Semicond. Prod. Appl. Note. AN-436. Motorola Semiconductor Products Division, Phoenix, Ariz.
Levin, I., Kugler, H. W., and Barnett, H. S. 1958. An automation system for insectaries. J. Econ. Entomol. 51: 109-110.
(5) Moody, D. S., Mastro, V. C., and Payne, T. L. 1973. Automatic light-dimming system to simulate twilight in environmental chambers. J. Econ. Entomol. 66: 1334-1335.
(6) Sparks, M. R. 1973. An automatic light intensity control for insect studies. J. Econ. Entomol. 66: 988-999.
(7) Tanabe, A. M. 1974. An automated lighting cycler for the insectary. J. Econ. Entomol. 67: 305-306.
(8) Wood, W. F., Jr. 1961. Illumination control for twilight studies. Ecology 42: 821-822.
(9) Zinder, D. A. 1972. SCR power control fundamentals. Motorola Semicond. Prod. Appl. Note AN-295. Motorola Semiconductor Products Division, Phoenix, Ariz. cuits. Motorola Semicond. Prod. Appl. Note AN-295. Motorola Semiconductor Products Division, Phoenix, Ariz.

- 1972. Unijunction trigger circuits for gated thyristors. Motorola Semicond. Prod. Appl. Note AN-413. Motorola Semiconductor Products Division, Phoenix, Ariz.
U. S. DEPARTMENTOF AGRICULTURE AGRICULTURAL RESEARCH SERVICE

SOUTHERN REGION P. O. 日OX 53326 NEW ORLEANS, LOUISIANA 70153

POSTAGE AND FEES PAID U. S. DEPARTMENT OF AGRICULTURE
OFFICIAL BUSINESS
AGR 101

[^0]: USDA POLICY DOES NOT PERMIT DISCRIMINATION BECAUSE OF RACE, COLOR. NATIONAL ORIGIN SEX. OR RELIGION. ANY PERSON WHO BELIEVES HE OR SHE HAS BEEN DISCRIMINATED AGAINS IN ANY USDA-RELATED ACTIVITY SHOULD WRITE IMMEDIATELY TO

[^1]: ${ }^{1}$ Agricutural engineers, Veterinary Toxicology and Entomology Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, College Station, Tex. 77840.
 $=$ Italic numbers in parentheses refer to items in "Literature Cited" at the end of this publication.

